三级黄色视频毛片_九九综合九九_欧美日韩精品久久久_国产精品亚洲第一_一级毛片视频_五月婷婷激情

 

劍橋大學利用AI技術改善電池健康和安全性

發布日期:2020-04-08  來源:OFweek鋰電網

核心提示:預測鋰離子電池的健康狀況和剩余使用壽命是限制電動汽車廣泛使用的一大難題。隨著時間的推移,電池性能會通過一系列復雜的精細化
預測鋰離子電池的健康狀況和剩余使用壽命是限制電動汽車廣泛使用的一大難題。隨著時間的推移,電池性能會通過一系列復雜的精細化學過程而下降。單獨來看,這些過程對電池性能沒有太大的影響,但合在一起,它們會嚴重縮短電池的性能和壽命。
 
來自劍橋大學和紐卡斯爾大學的研究人員設計了一種新的方法,通過向電池發送電脈沖并測量其響應來監測電池。然后,他們利用機器學習算法對測量數據進行處理,以預測電池的健康狀況和使用壽命。
 
“安全性和可靠性是最重要的設計標準,因為我們開發的電池可以在一個小空間里儲存大量能量,”劍橋大學卡文迪什實驗室的阿爾法·李博士(Dr. Alpha Lee)說,”通過改進監測充放電的軟件,并使用數據驅動軟件來控制充電過程,我相信我們可以大大改善電池性能。”
 
研究人員設計了一種通過向電池發送電脈沖并測量其反應來監測電池的方法。然后使用一個機器學習模型來識別電反應的具體特征,這些特征是電池老化的信號。
 
研究人員進行了超過20000次的實驗測量來訓練模型。重要的是,該模型學會了如何從無關的噪聲中區分重要的信號。他們的方法是無創的,是一個簡單的附加系統。
 
研究人員還發現,機器學習模型可以為退化的物理機制提供線索。該模型可以告知哪些電信號與老化最相關,進而允許他們設計特定的實驗來探究電池退化的原因和方式。
 
“機器學習是對物理理解的補充和增強,”第一作者之一、同樣來自卡文迪什實驗室的張云偉博士(Dr. Yunwei Zhang)說。“我們的機器學習模型識別出的可解釋信號是未來理論和實驗研究的起點。”
 
該研究結果發表在《自然通訊》雜志上。

 
 
[ 頻道搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 違規舉報 ]  [ 關閉窗口 ]

 


網站首頁 | 關于我們 | 聯系方式 | 使用協議 | 版權隱私 | 網站地圖 | 排名推廣 | 廣告服務 | 網站留言 | RSS訂閱 | 滬ICP備16055099號-94

風光儲網 版權所有 © 2016-2018 咨詢熱線:021-6117 0511  郵箱:sina@heliexpo.cn 在線溝通:

本網中文域名:風光儲網.本站網絡實名:風光儲網-最專業的風光儲行業信息網站

 
主站蜘蛛池模板: 92精品国产自产在线 | av手机免费在线观看 | 午夜人体 | 中文字幕在线观看日韩 | 色婷婷久久久亚洲一区二区三区 | 欧美成人一区在线观看 | 国产精品一区二区三区在线 | 中文字幕欧美一区二区三区 | 毛片在线免费视频 | 少妇色诱麻豆色哟哟 | 国毛片 | 斗破苍穹在线免费 | 久久久中文 | 国产激爽大片在线播放 | 亚洲一区 国产 | 精品一区二区免费 | 免费专区 - 91爱爱 | 久久情爱网 | 中文字幕在线观看网址 | 欧美一区二区三区不卡免费观看 | 日韩av成人 | 污片在线观看视频 | teensexhd| av在线免费播放网站 | 一级裸体视频 | 久久国产在线观看 | 久久色播 | 成人电影毛片 | 亚洲福利视频52 | 国产精品视频导航 | 麻豆视频免费网站 | 日韩视频中文 | 久久久电影电视剧免费看 | 国产一级二级视频 | 毛片韩国| 久久精品日产第一区二区三区 | 视频一区二区三区视频 | 亚洲午夜1000理论片aa | 色妞视频男女视频 | 久久国产精品二国产精品 | chengrenzaixian |